例如:"lncRNA", "apoptosis", "WRKY"

The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans.

Dev. Biol.2006 Jul 15;295(2):664-77. Epub 2006 Apr 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The C. elegans pharynx is produced from the embryonic blastomeres ABa and MS. Pharyngeal fate in the ABa lineage is specified by the combined activities of GLP-1/Notch-mediated signals and the TBX-37 and TBX-38 T-box transcription factors. Here, we show another T-box factor TBX-2 also functions in ABa-derived pharyngeal development. tbx-2 mutants arrest as L1 larvae lacking most or all ABa-derived pharyngeal muscles. In comparison, tbx-2 mutants retain ABa-derived marginal cells and pharyngeal muscles derived from MS. A tbx-2Colon, two colonsgfp translational fusion is expressed in a dynamic pattern in C. elegans embryos beginning near the 100-cell stage. Early expression is limited to a small number of cells, which likely include the ABa-derived pharyngeal precursors, while later expression is observed in body wall muscles and a subset of pharyngeal neurons. TBX-2 contains 2 consensus sumoylation sites, and it interacts in a yeast two-hybrid assay with the UBC-9 and GEI-17 components of the C. elegans SUMO-conjugating pathway. has been previously shown to cause variable embryonic and larval arrest, and we find that, like tbx-2 mutants, ubc-9(duanyu1615) animals lack ABa-derived pharyngeal muscles. ubc-9(duanyu1615) also alters the subnuclear distribution of TBX-2::GFP fusion protein, suggesting that UBC-9 and TBX-2 interact in C. elegans. Together, these results indicate that TBX-2 and SUMO-conjugating enzymes are necessary for ABa-derived pharyngeal muscle, and we hypothesize that TBX-2 function requires sumoylation. Sumoylation is increasingly recognized as an important mechanism controlling activity of many nuclear factors, and these results provide the first evidence that T-box factor activity may require sumoylation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读