例如:"lncRNA", "apoptosis", "WRKY"

Molecular identification and characterization of a family of kinases with homology to Ca2+/calmodulin-dependent protein kinases I/IV.

J Biol Chem. 2006 Jul 21;281(29):20427-39. Epub 2006 May 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Despite the critical importance of Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaMK) II signaling in neuroplasticity, only a limited amount of work has so far been available regarding the presence and significance of another predominant CaMK subfamily, the CaMKI/CaMKIV family, in the central nervous system. We here searched for kinases with a core catalytic structure similar to CaMKI and CaMKIV. We isolated full-length cDNAs encoding three mouse CaMKI/CaMKIV-related kinases, CLICK-I (CL1)/doublecortin and CaM kinase-Like (DCAMKL)1, CLICK-II (CL2)/DCAMKL2, and CLICK-I,II-related (CLr)/DCAMKL3, the kinase domains of which had an intermediate homology not only to CaMKI/CaMKIV but also to CaMKII. Furthermore, CL1, CL2, and CLr were highly expressed in the central nervous system, in a neuron-specific fashion. CL1alpha and CL1beta were shorter isoforms of DCAMKL1, which lacked the doublecortin-like domain (Dx). In contrast, CL2alpha and CL2beta contained a full N-terminal Dx, whereas CLr only possessed a partial and dysfunctional Dx. Interestingly, despite a large similarity in the kinase domain, CL1/CL2/CLr had an impact on CRE-dependent gene expression distinct from that of the related CaMKI/CaMKIV and CaMKII. Although these were previously shown to activate Ca(2+)/cAMP-response element-binding protein (CREB)-dependent transcription, we here show that CL1 and CL2 were unable to significantly phosphorylate CREB Ser-133 and rather inhibited CRE-dependent gene expression by a dominant mechanism that bypassed CREB and was mediated by phosphorylated TORC2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读