例如:"lncRNA", "apoptosis", "WRKY"

Immunolocalisation of the D. melanogaster Nramp homologue Malvolio to gut and Malpighian tubules provides evidence that Malvolio and Nramp2 are orthologous.

J. Exp. Biol.2006 May;209(Pt 10):1988-95
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nramp (Slc11a1) genes in mammals are associated with the transport of iron and other divalent cations; Nramp1 in macrophages involved in the innate immune response against intracellular pathogens, and Nramp2 with duodenal iron uptake and the transferrin-transferrin-receptor pathway of iron assimilation. The Drosophila melanogaster Nramp-related gene is known as Malvolio. The localisation of Malvolio protein was inferred from the enhancer trap line initially used to isolate Malvolio in a screen for mutants with defects in taste perception. Here we describe the generation of a Malvolio-reactive polyclonal antibody and apply it to evaluate Malvolio localisation during stages of D. melanogaster development, and compare the results with the localisation of the enhancer trap line identified with beta-galactosidase. All immunolocalisation studies have been confirmed to be specific with Malvolio-blocking peptides. Our results demonstrated expression within Malpighian tubules, testis, brain, the amnioserosa of embryos, the larval and adult alimentary canal. Expression within the gut was of significant interest, as mammalian Nramp2 in the gut plays a primary role in the acquisition of dietary iron. We confirm expression within the central nervous system and in cells of the haematopoietic system. By immunohistochemistry we showed that expression within cells was either punctuate, diffuse cytoplasmic or plasma membrane associated, or both. The staining within the gut indicates a degree of conservation of components for iron acquisition between flies and mammals, suggesting that a comparable mechanism has been retained during evolution.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读