[No authors listed]
Most K+ channels in plants are structurally classified into the Shaker family named after the shaker K+ channel in Drosophila. Plant K+ channels function in many physiological processes including osmotic regulation and K+ nutrition. An outwardly rectifying K+ channel, SKOR, mediates the delivery of K+ from stelar cells to the xylem in the roots, a critical step in the long-distance distribution of K+ from roots to the upper parts of the plant. Here we report that SKOR channel activity is strictly dependent on intracellular K+ concentrations. Activation by K+ did not affect the kinetics of voltage dependence in SKOR, indicating that a voltage-independent gating mechanism underlies the K+ sensing process. Further analysis showed that the C-terminal non-transmembrane region of the SKOR protein was required for this sensing process. The intracellular K+ sensing mechanism couples SKOR activity to K+ nutrition status in the 'source cells', thereby establishing a supply-based unloading system for the regulation of K+ distribution.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |