例如:"lncRNA", "apoptosis", "WRKY"

Homology modeling and site-directed mutagenesis of pyroglutamyl peptidase II. Insights into omega-versus aminopeptidase specificity in the M1 family.

J Biol Chem. 2006 Jul 07;281(27):18581-90. Epub 2006 Apr 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Pyroglutamyl peptidase II (PPII), a highly specific membrane-bound omegapeptidase, removes N-terminal pyroglutamyl from thyrotropin-releasing hormone (peptide in the extracellular space. PPII and enzymes with distinct specificities such as neutral aminopeptidase (APN), belong to the M1 metallopeptidase family. M1 aminopeptidases recognize the N-terminal amino group of substrates or inhibitors through hydrogen-bonding to two conserved residues (Gln-213 and exopeptidase motif Glu-355 in human APN), whereas interactions involved in recognition of pyroglutamyl residue by PPII are unknown. In rat PPII, the conserved exopeptidase residue is Glu-408, whereas the other one is Ser-269. Given that variations in M1 peptidase specificity are likely due to changes in the catalytic region, we constructed three-dimensional models for the catalytic domains of PPII and APN. The models showed a salt bridge interaction between PPII-Glu-408 and PPII-Lys-463, whereas the equivalent APN-Glu-355 did not participate in a salt bridge. Docking of thyrotropin-releasing hormone in PPII model suggested that the pyroglutamyl residue interacted with PPII-Ser-269. According to our models, PPII-S269Q and -K463N mutations should leave Glu-408 in a physicochemical context similar to that found in M1 aminopeptidases; alternatively, PPII-S269E replacement might be sufficient to transform PPII into an aminopeptidase. These hypotheses were supported by site-directed mutagenesis; the mutants lost omegapeptidase but displayed alanyl-aminopeptidase activity. In conclusion, recognition of a substrate without an N-terminal charge requires neutralization of the aminopeptidase anionic binding site; furthermore, shortening of side chain at PPII-269 position is required for adjustment to the pyroglutamyl residue.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读