例如:"lncRNA", "apoptosis", "WRKY"

The phosphopantetheinyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria.

Appl. Environ. Microbiol.2006 Apr;72(4):2298-305
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Phosphopantetheinyl transferases (PPTs) are a superfamily of essential enzymes required for the synthesis of a wide range of compounds including fatty acid, polyketide, and nonribosomal peptide metabolites. These enzymes activate carrier proteins in specific biosynthetic pathways by the transfer of a phosphopantetheinyl moiety to an invariant serine residue. PPTs display low levels of sequence similarity but can be classified into two major families based on several short motifs. The prototype of the first family is the broad-substrate-range PPT Sfp, which is required for biosynthesis of surfactin in Bacillus subtilis. The second family is typified by the Escherichia coli acyl carrier protein synthase (AcpS). Facilitated by the growing number of genome sequences available for analyses, large-scale phylogenetic studies were utilized in this research to reveal novel subfamily groupings, including two subfamilies within the Sfp-like family. In the present study degenerate oligonucleotide primers were designed for amplification of cyanobacterial PPT gene fragments. Subsequent phylogenetic analyses suggested a unique, function-based PPT type, defined by the PPTs involved in heterocyst differentiation. Evidence supporting this hypothesis was obtained by sequencing the region surrounding the partial Nodularia spumigena PPT gene. The ability to genetically classify PPT function is critical for the engineering of novel compounds utilizing combinatorial biosynthesis techniques. Information regarding cyanobacterial PPTs has important ramifications for the ex situ production of cyanobacterial natural products.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读