例如:"lncRNA", "apoptosis", "WRKY"

Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion.

J Biol Chem. 2006 Jun 02;281(22):15423-33. Epub 2006 Mar 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


beta-Catenin is a key molecule involved in both cell adhesion and Wnt signaling pathway. However, the exact relationship between these two roles has not been clearly elucidated. Tyrosine phosphorylation of beta-catenin was shown to decrease its binding to E-cadherin, leading to decreased cell adhesion and increased beta-catenin signaling. We have previously shown that receptor-like protein-tyrosine phosphatase PCP-2 localizes to the adherens junctions and directly binds and dephosphorylates beta-catenin, suggesting that PCP-2 might regulate the balance between signaling and adhesive beta-catenin. Here we demonstrate that PCP-2 can inhibit both the wild-type and constitutively active forms of beta-catenin in activating target genes such as c-myc. The phosphatase activity of PCP-2 is required for this effect since loss of catalytic activity attenuates its inhibitory effect on beta-catenin activation. Expression of PCP-2 in SW480 colon cancer cells can lead to stabilization of cytosolic pools of beta-catenin perhaps, by virtue of their physical interaction. PCP-2 expression also leads to increased membrane-bound E-cadherin and greater stabilization of adherens junctions by dephosphorylation of beta-catenin, which could further sequester cytosolic beta-catenin and thus inhibit beta-catenin mediated nuclear signaling. Furthermore, SW480 cells stably expressing PCP-2 have a reduced ability to proliferate and migrate. Thus, PCP-2 may play an important role in the maintenance of epithelial integrity, and a loss of its regulatory function may be an alternative mechanism for activating beta-catenin signaling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读