例如:"lncRNA", "apoptosis", "WRKY"

Identification of calcium channel alpha1 subunit mRNA expressed in retinal bipolar neurons.

Mol. Vis.2006 Mar 17;12:184-9
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:Glutamate release from goldfish bipolar cell terminals is driven by Ca2+ influx through L-type calcium channels that exhibit several uncommon features, including rapid kinetics of activation and deactivation, slow inactivation, and activation at an unusually negative voltage range for L-type channels. The purpose of this study was to establish the molecular identities of the alpha1 subunits responsible for these distinctive properties. METHODS:Transcripts for calcium channel alpha1 subunits expressed in individual goldfish ON-type bipolar cells were identified using single-cell reverse transcriptase polymerase chain reaction (RT-PCR). After cloning the goldfish homologs of the zebrafish and mammalian subunits, we designed sets of nested primers that are specific for Cav1.3a, and Cav1.3b L-type calcium channels. RESULTS:Large-terminal, ON-type bipolar cells express transcripts of Cav1.3a and/or Cav1.3b. CONCLUSIONS:The endogenous expression of only one or both subunits in a single cell raises the possibility of functionally distinct classes of bipolar cells that differ in calcium current properties.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读