例如:"lncRNA", "apoptosis", "WRKY"

High-level ribosomal frameshifting directs the synthesis of IS150 gene products.

Nucleic Acids Res.1991 Aug 25;19(16):4377-85. doi:10.1093/nar/19.16.4377
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


IS150 contains two tandem, out-of-phase, overlapping genes, ins150A and ins150B, which are controlled by the same promoter. These genes encode proteins of 19 and 31 kD, respectively. A third protein of 49 kD is a transframe gene product consisting of domains encoded by both genes. Specific -1 ribosomal frameshifting is responsible for the synthesis of the large protein. Expression of ins150B also involves frameshifting. The IS150 frameshifting signals operate with a remarkably high efficiency, causing about one third of the ribosomes to switch frame. All of the signals required for this process are encoded in a 83-bp segment of the element. The heptanucleotide A AAA AAG and a potential stem-loop-forming sequence mark the frameshifting site. Similar sequence elements are found in -1 frameshifting regions of bacterial and retroviral genes. A mutation within the stem-loop sequence reduces the rate of frameshifting by about 80%. Artificial transposons carrying this mutation transpose at a normal frequency, but form cointegrates at a approximately 100-fold reduced rate.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读