例如:"lncRNA", "apoptosis", "WRKY"

Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1-7).

Biochem. J.2006 Apr 1;395(1):183-90
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The molecular mechanisms involved in the Ang-(1-7) [angiotensin-(1-7)] effect on sodium renal excretion remain to be determined. In a previous study, we showed that Ang-(1-7) has a biphasic effect on the proximal tubule Na+-ATPase activity, with the stimulatory effect mediated by the AT1 receptor. In the present study, we investigated the molecular mechanisms involved in the inhibition of the Na+-ATPase by Ang-(1-7). All experiments were carried out in the presence of 0.1 nM losartan to block the AT1 receptor-mediated stimulation. In this condition, Ang-(1-7) at 0.1 nM inhibited the Na+-ATPase activity of the proximal tubule by 54%. This effect was reversed by 10 nM PD123319, a specific antagonist of the AT2 receptor, and by 1 muM GDP[beta-S] (guanosine 5'-[beta-thio]diphosphate), an inhibitor of G protein. Ang-(1-7) at 0.1 M induced [35S]GTP[S] (guanosine 5'-[gamma-[35S]thio]triphosphate) binding and 1 mug/ml pertussis toxin, an inhibitor of G(i/o) protein, reversed the Ang-(1-7) effect. Furthermore, it was observed that the inhibitory effect of Ang-(1-7) on the Na+-ATPase activity was completely reversed by 0.1 microM LY83583, an inhibitor of guanylate cyclase, and by 2 muM KT5823, a PKG (protein kinase G) inhibitor, and was mimicked by 10 nM d-cGMP (dibutyryl cGMP). Ang-(1-7) increased the PKG activity by 152% and this effect was abolished by 10 nM PD123319 and 0.1 microM LY83583. Taken together, these data indicate that Ang-(1-7) inhibits the proximal tubule Na+-ATPase by interaction with the AT2 receptor that subsequently activates the G(i/o) protein/cGMP/PKG pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读