例如:"lncRNA", "apoptosis", "WRKY"

Nitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTP-PEST and p130cas.

Am J Physiol Cell Physiol. 2006 Apr;290(4):C1263-70. Epub 2005 Dec 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Recent data support the hypothesis that reactive oxygen species play a central role in the initiation and progression of vascular diseases. An important vasoprotective function related to the regulation of levels appears to be the antioxidant capacity of nitric oxide (NO). We previously reported that treatment with NO decreases phosphotyrosine levels of adapter protein p130(cas) by increasing protein tyrosine phosphatase-proline, glutamate, serine, and threonine sequence protein (PTP-PEST) activity, which leads to the suppression of agonist-induced H(2)O(2) elevation and motility in cultured rat aortic smooth muscle cells (SMCs). The present study was performed to investigate the hypotheses that 1) IGF-I increases the activity of the small GTPase Rac1 as well as H(2)O(2) levels and 2) NO suppresses IGF-I-induced H(2)O(2) elevation by decreasing Rac1 activity via increased PTP-PEST activity and dephosphorylation of p130(cas). We report that IGF-I induces phosphorylation of p130(cas) and activation of Rac1 and that NO attenuates these effects. The effects of NO are mimicked by the overexpression of PTP-PEST or dominant-negative (dn)-p130(cas) and antagonized by the expression of dn-PTP-PEST or p130(cas). We conclude that IGF-I induces rat aortic SMC motility by increasing phosphotyrosine levels of p130(cas) and activating Rac1 and that NO decreases motility by activating PTP-PEST, inducing dephosphorylating p130(cas), and decreasing Rac1 activity. Decreased Rac1 activity lowers intracellular H(2)O(2) levels, thus attenuating cell motility.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读