例如:"lncRNA", "apoptosis", "WRKY"

The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans.

J. Neurosci.2005 Nov 16;25(46):10671-81
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Serotonin (5-HT) is a neuromodulator that regulates many aspects of animal behavior, including mood, aggression, sex drive, and sleep. In vertebrates, most of the behavioral effects of 5-HT appear to be mediated by G-protein-coupled receptors (GPCRs). Here, we show that SER-1 is the 5-HT GPCR responsible for the stimulatory effects of exogenous 5-HT in two sexually dimorphic behaviors of Caenorhabditis elegans, egg laying and male ventral tail curling. Loss of ser-1 function leads to decreased egg laying in hermaphrodites and defects in the turning step of mating behavior in males. ser-1 is expressed in muscles that are postsynaptic to serotonergic neurons and are known to be required for these behaviors. Analysis of the ser-1 mutant also reveals an inhibitory effect of 5-HT on egg laying that is normally masked by SER-1-dependent stimulation. This inhibition of egg laying requires MOD-1, a 5-HT-gated chloride channel. Loss of mod-1 function in males also produces defects in ventral tail curling and enhances the turning defects in ser-1 mutant males. Sustained elevations in 5-HT levels result in behavioral adaptation to both the stimulatory and inhibitory actions of the neurotransmitter, indicating that both SER-1 and MOD-1 signaling can be modulated. Removal of wild-type animals from high levels of exogenous 5-HT produces a SER-1-dependent withdrawal response in which egg laying is significantly decreased. These studies provide insight into the role of 5-HT in behavior and the regulation of 5-HT(2) receptor function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读