例如:"lncRNA", "apoptosis", "WRKY"

Establishment of a serum tumor marker for preclinical trials of mouse prostate cancer models.

Clin. Cancer Res.2005 Nov 1;11(21):7911-9
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Current prostate cancer research in both basic and preclinical trial studies employ genetically engineered mouse models. However, unlike in human prostate cancer patients, rodents have no counterpart of prostatic-specific antigen (PSA) for monitoring prostate cancer initiation and progression. In this study, we established a mouse serum tumor marker from a mouse homologue of human prostate secretory protein of 94 amino acids (PSP94). Immunohistochemistry studies on different histologic grades from both transgenic and knock-in mouse prostate cancer models showed the down-regulation of tissue PSP94 expression (P < 0.001), the same as for PSA and PSP94 in humans. The presence of mouse serum PSP94 was shown by affinity column and immunoprecipitation purification using a polyclonal mouse PSP94 antibody. A competitive ELISA protocol was established to quantify serum PSP94 levels with a sensitivity of 1 ng/mL. Quantified serum levels of mouse PSP94 ranged from 49.84 ng/mL in wild-type mice to 113.86, 400.45, and 930.90 ng/mL in mouse prostatic intraepithelial neoplasia with microinvasion, well differentiated, moderately differentiated, and poorly differentiated prostate cancer genetically engineered prostate cancer mice, respectively (P < 0.01, n = 68). This increase in serum PSP94 is also well correlated with age and tumor weight. Through longitudinal monitoring of serum PSP94 levels of castrated mice (androgen ablation therapy), we found a correlation between responsiveness/refractory prostate tissues and serum PSP94 levels. The utility of mouse serum PSP94 as a marker in hormone therapy was further confirmed by three-dimensional ultrasound imaging. The establishment of the first rodent prostate cancer serum biomarker will greatly facilitate both basic and preclinical research on human prostate cancer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读