[No authors listed]
Lesions that transiently block DNA synthesis generate replication intermediates with recombinogenic potential. In order to investigate the mechanisms involved in lesion-induced recombination, we developed an homologous recombination assay involving the transfer of genetic information from a plasmid donor molecule to the Escherichia coli chromosome. The replication blocking lesion used in the present assay is formed by covalent binding of the carcinogen N-2-acetylaminofluorene to the C8 position of guanine residues (G-AAF adducts). The frequency of recombination events was monitored as a function of the number of lesions present on the donor plasmid. These DNA adducts are found to trigger high levels of homologous recombination events in a dose-dependent manner. Formation of recombinants is entirely RecA-dependent, the RecF and RecBCD sub-pathways accounting for about 2/3 and 1/3, respectively. Inactivation of recG stimulates recombinant formation about five-fold. In a recG background, the RecF pathway is stimulated about four-fold, while the contribution of the RecBCD pathway remains constant. In addition, in the recG strain, a recombination pathway that accounts for about 30% of the recombinants and requires genes that belong to both RecF and RecBCD pathways is revealed.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |