例如:"lncRNA", "apoptosis", "WRKY"

Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase.

J. Bacteriol.2005 Oct;187(20):6936-42
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The glucitol operon of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读