例如:"lncRNA", "apoptosis", "WRKY"

Role of calmodulin methionine residues in mediating productive association with cardiac ryanodine receptors.

Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H794-9. Epub 2005 Sep 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Calmodulin (CaM) binds to the cardiac ryanodine receptor Ca2+ release channel (RyR2) with high affinity and may act as a regulatory channel subunit. Here we determine the role of CaM Met residues in the productive association of CaM with RyR2, as assessed via determinations of [3H]ryanodine and [35S]CaM binding to cardiac muscle sarcoplasmic reticulum (SR) vesicles. Oxidation of all nine CaM Met residues abolished the productive association of CaM with RyR2. Substitution of the COOH-terminal Mets of CaM with Leu decreased the extent of CaM inhibition of cardiac SR (CSR) vesicle [3H]ryanodine binding. In contrast, replacing the NH2-terminal Met of CaM with Leu increased the concentration of CaM required to inhibit CSR [3H]ryanodine binding but did not alter the extent of inhibition. Site-specific substitution of individual CaM Met residues with Gln demonstrated that Met124 was required for both high-affinity CaM binding to RyR2 and for maximal CaM inhibition. These results thus identify a Met residue critical for the productive association of CaM with RyR2 channels.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读