例如:"lncRNA", "apoptosis", "WRKY"

Coordinate regulation of forskolin-induced cellular proliferation in macrophages by protein kinase A/cAMP-response element-binding protein (CREB) and Epac1-Rap1 signaling: effects of silencing CREB gene expression on Akt activation.

J Biol Chem. 2005 Nov 18;280(46):38276-89. Epub 2005 Sep 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In this study, we have examined the role of two cAMP downstream effectors protein kinase A and Epac, in forskolin-induced macrophage proliferation. Treatment of macrophages with forskolin enhanced [(3)H]thymidine uptake and increased cell number, and both were profoundly reduced by prior treatment of cells with H-89, a specific inhibitor. Incubation of macrophages with forskolin triggered the activation of Akt, predominantly by phosphorylation of Ser-473, as measured by Western blotting and assay of its kinase activity. Akt activation was significantly inhibited by LY294002 and wortmannin, specific inhibitors of phosphatidylinositol 3-kinase, but not by H-89. Incubation of macrophages with forskolin also increased Epac1 and Rap1.GTP. Immunoprecipitation of Epac1 in forskolin-stimulated cells co-immunoprecipitated Rap1, p-Akt(Thr-308), and p-Akt(Ser-473). Silencing of CREB gene expression by RNA interference prior to forskolin treatment not only decreased CREB protein and its phosphorylation at Ser-133, but also phosphorylation of Akt at Ser-473, and Thr-308. Concomitantly, this treatment inhibited [(3)H]thymidine uptake and reduced forskolin-induced proliferation of macrophages. Forskolin treatment also inhibited activation of the apoptotic mechanism while promoting up-regulation of the anti-apoptotic pathway. We conclude that forskolin mediates cellular proliferation via cAMP-dependent activation of both duanyu1529 and Epac.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读