例如:"lncRNA", "apoptosis", "WRKY"

Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana.

Photosynth Res. 2005 Sep;85(3):327-40. doi:10.1007/s11120-005-6807-z
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Land plants change the compositions of light-harvesting complexes (LHC) and chlorophyll (Chl) a/b ratios in response to the variable light environments which they encounter. In this study, we attempted to determine the mechanism which regulates Chl a/b ratios and whether the changes in Chl a/b ratios are essential in regulation of LHC accumulation during light acclimation. We hypothesized that changes in the mRNA levels for chlorophyll a oxygenase (CAO) involved in Chl b biosynthesis are an essential part of light response of Chl a/b ratios and LHC accumulation. We also examined the light-intensity dependent response of CAO-overexpression and wild-type Arabidopsis thaliana plants. When wild-type plants were acclimated from low-light (LL) to high-light (HL) conditions, CAO mRNA levels decreased and the Chl a/b ratio increased. In transgenic plants overexpressing CAO, the Chl a/b ratio remained low under HL conditions; thereby suggesting that changes in the CAO mRNA levels are necessary for those in Chl a/b ratios upon light acclimation. Under HL conditions, the accumulation of Lhcb1, Lhcb3 and Lhcb6 was enhanced in plants overexpressing CAO. On the contrary, in a CAO-deficient mutant, chlorina 1-1, theaccumulation of Lhcb1, Lhcb2, Lhcb3, Lhcb6 and Lhca4 was reduced. In comparison to wild-type, beta-carotene levels were reduced in CAO-overexpressing plants, while they were elevated in chlorina 1-1 mutants. These results imply that the transcriptional control of CAO is a part of the regulatory mechanism for the accumulation of a distinct set of LHC proteins upon light acclimation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读