例如:"lncRNA", "apoptosis", "WRKY"

SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast.

Mol. Cell. 2005 Sep 16;19(6):817-28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Several studies have suggested that SUMO may participate in the regulation of heterochromatin, but direct evidence is lacking. Here, we present a direct link between sumoylation and heterochromatin stability. SUMO deletion impaired silencing at heterochromatic regions and induced histone H3 Lys4 methylation, a hallmark of active chromatin in fission yeast. Our findings showed that the SUMO-conjugating enzyme Hus5/Ubc9 interacted with the conserved heterochromatin proteins Swi6, Chp2 (a paralog of Swi6), and Clr4 (H3 Lys9 methyltransferase). Moreover, chromatin immunoprecipitation (ChIP) revealed that Hus5 was highly enriched in heterochromatic regions in a heterochromatin-dependent manner, suggesting a direct role of Hus5 in heterochromatin formation. We also found that Swi6, Chp2, and Clr4 themselves can be sumoylated in vivo and defective sumoylation of Swi6 or Chp2 compromised silencing. These results indicate that Hus5 associates with heterochromatin through interactions with heterochromatin proteins and modifies substrates whose sumoylations are required for heterochromatin stability, including heterochromatin proteins themselves.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读