例如:"lncRNA", "apoptosis", "WRKY"

A novel pathway determining multidrug sensitivity in Schizosaccharomyces pombe.

Genes Cells. 2005 Oct;10(10):941-51
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In this study, we show that a mutation isolated during a screen for determinants of chemosensitivity in S. pombe results in loss of function of a previously uncharacterized protein kinase now named Hal4. Hal4 shares sequence homology to Hal4 and Hal5 in S. cerevisiae, and previous evidence indicates that these kinases positively regulate the major potassium transporter Trk1,2 and thereby maintain the plasma membrane potential. Disruption of this ion homeostasis pathway results in a hyperpolarized membrane and a concomitant increased sensitivity to cations. We demonstrate that a mutation in hal4+ results in hyperpolarization of the plasma membrane. In addition to the original selection agent, the hal4-1 mutant is sensitive to a variety of chemotherapeutic agents and stress-inducing compounds. Furthermore, this wider chemosensitive phenotype is also displayed by corresponding mutants in S. cerevisiae, and in a trk1deltatrk2delta double deletion mutant in S. pombe. We propose that this pathway and its role in regulating the plasma membrane potential may act as a pleiotropic determinant of sensitivity to chemotherapeutic agents.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读