[No authors listed]
Experimental cDNA sequence determinations lag behind in silico gene structure predictions in some recently sequenced genomes. This may be due in part to low transcript abundance and/or the severely spatio-temporarily restricted expression pattern of some genes. Here we characterize the predicted repressed gene of Arabidopsis thaliana (At4g21130) that encodes a homologue of the Arabidopsis U3-55K-like protein (At4g05410) and of the U3-55K (RNU3IP2, Rrp9p) proteins from other eukaryotes. In man and yeast, U3-55K is involved in the processing of the pre-ribosomal RNA. Here we show that treatment with inhibitors of histone deacetylases (trichostatin A, sodium butyrate) or DNA methyltransferases (5-aza-2'-deoxycytidine) induces a low but distinct level of mRNA from the repressed Arabidopsis At4g21130 locus, which can be detected by RT-PCR amplification. Direct sequencing of PCR products reveals the open reading frame that differs, in part, from the hypothetical one and encodes a seven-WD-repeat protein highly conserved when compared to U3-55K proteins from various eukaryotic species. This suggests the conservation of its function. The described approach may help to determine the nucleotide sequences of transcripts from predicted genes with a low level of expression.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |