例如:"lncRNA", "apoptosis", "WRKY"

Identical phenotypes of CatSper1 and CatSper2 null sperm.

J Biol Chem. 2005 Sep 16;280(37):32238-44. Epub 2005 Jul 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Among several candidate Ca(2+) entry channels in sperm, only CatSper1 and CatSper2 are known to have required roles in male fertility. Past work with CatSper1 null sperm indicates that a critical lesion in hyperactivated motility underlies the infertility phenotype and is associated with an absence of depolarization-evoked Ca(2+)entry. Here we show that failure of hyperactivation of CatSper2 null sperm similarly correlates with an absence of depolarization evoked Ca(2+) entry. Additional shared aspects of the phenotypes of CatSper1 and -2 null sperm include unperturbed regional distributions of conventional voltage-gated Ca(2+) channel proteins and robust acceleration of the flagellar beat by bicarbonate. Further study reveals that treatment of both wild-type and CatSper2 null sperm with procaine increases beat asymmetry, a characteristic of the flagellar waveform of hyperactivation. This partial rescue of the loss-of-hyperactivation phenotype suggests that an absence of CatSper2 precludes hyperactivation by preventing delivery of needed Ca(2+) messenger rather than by preventing flagellar responses to Ca(2+). CatSper2 null sperm also have an increased basal cAMP content and beat frequency. Protein kinase A inhibitor H89 lowers beat frequency to that of wild-type sperm, suggesting that CatSper2 is required for protein kinase A-mediated, tonic control of resting cAMP content. Relative to wild-type testis, CatSper1 and -2 null testes contain normal amounts of CatSper2 and -1 transcripts, respectively. However, CatSper1 null sperm lack CatSper2 protein and CatSper2 null sperm lack CatSper1 protein. Hence, stable expression of CatSper1 protein requires CatSper2 and vice versa. This co-dependent expression dictates identical loss-of-function sperm phenotypes for CatSper1 and -2 null mutants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读