[No authors listed]
Hierarchical control ensures that facultative bacteria preferentially use the available respiratory electron acceptor with the most positive standard redox potential. Thus, nitrate is used before other electron acceptors such as fumarate for anaerobic respiration. Nitrate regulation is mediated by the NarX-NarL two-component system, which activates the transcription of operons encoding nitrate respiration enzymes and represses the transcription of operons for other anaerobic respiratory enzymes, including enzymes involved in fumarate respiration. These are fumarate reductase (encoded by the frdABCD operon), fumarase B, which generates fumarate from malate, and the DcuB permease for fumarate, malate, and aspartate. The transcription of the corresponding structural genes is activated by the DcuS-DcuR two-component system in response to fumarate or its dicarboxylate precursors. We report results from preliminary transcription microarray experiments that revealed two previously unknown members of the NarL regulon: the aspA gene encoding aspartate-ammonia lyase, which generates fumarate; and the dcuSR operon encoding the dicarboxylate-responsive regulatory system. We measured beta-galactosidase expression from monocopy aspA-lacZ, frdA-lacZ, and dcuS-lacZ operon fusions in response to added nitrate and fumarate and with respect to the dcuR and narL genotypes. Nitrate, acting through the NarX-NarL regulatory system, repressed the transcription of all three operons. Only frdA-lacZ expression, however, was responsive to added fumarate or a dcuR(+) genotype. Phospho-NarL protein protected operator sites in the aspA and dcuS promoter regions from DNase I cleavage in vitro. The overall results are consistent with the hypothesis that nitrate represses frdA operon transcription not only directly, by repressing frdA promoter activity, but also indirectly, by repressing dcuS promoter activity.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |