例如:"lncRNA", "apoptosis", "WRKY"

The TOR and EGO protein complexes orchestrate microautophagy in yeast.

Mol. Cell. 2005 Jul 1;19(1):15-26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The rapamycin-sensitive TOR signaling pathway in Saccharomyces cerevisiae positively controls cell growth in response to nutrient availability. Accordingly, TOR depletion or rapamycin treatment causes regulated entry of cells into a quiescent growth phase. Although this process has been elucidated in considerable detail, the transition from quiescence back to proliferation is poorly understood. Here, we describe the identification of a conserved member of the RagA subfamily of Ras-related GTPases, Gtr2, which acts in a vacuolar membrane-associated protein complex together with Ego1 and Ego3 to ensure proper exit from rapamycin-induced growth arrest. We demonstrate that the EGO complex, in conjunction with TOR, positively regulates microautophagy, thus counterbalancing the massive rapamycin-induced, macroautophagy-mediated membrane influx toward the vacuolar membrane. Moreover, large-scale genetic analyses of the EGO complex confirm the existence of a growth control mechanism originating at the vacuolar membrane and pinpoint the amino acid glutamine as a key metabolite in TOR signaling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读