[No authors listed]
IFN-gamma-activated transcriptional element (GATE)-binding factor 1 (GBF1) was identified as a transactivator that induces gene expression through GATE, a novel IFN-inducible element. Although it can induce gene expression, it is an extremely weak DNA-binding protein on its own. GATE also binds another transcription factor, C/EBP-beta. Therefore, we explored whether GBF1 physically interacts with C/EBP-beta to induce IFN-gamma-regulated transcription. In response to IFN-gamma, C/EBP-beta undergoes phosphorylation at a critical ERK1/2 phosphorylation motif. Mutational inactivation of this motif and/or interference with the ERK1/2 activation prevented the IFN-gamma-induced interactions between GBF1 and C/EBP-beta. A 37-aa long peptide derived from the GBF1 protein can associate with C/EBP-beta in an IFN-inducible manner. These results identify a converging point for two transactivators that exert their effects through a single response element. Together, our studies identify a novel regulatory mechanism that controls IFN-induced transcription.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |