[No authors listed]
Most plant microtubule-associated proteins (MAPs) have homologues across the phylogenetic spectrum. To find potential plant-specific MAPs that will have evaded bioinformatic searches we devised a low stringency method for isolating proteins from an Arabidopsis cell suspension on endogenous taxol-microtubules. By tryptic peptide mass fingerprinting we identified 55 proteins that were enriched on taxol-microtubules. Amongst a range of known MAPs, such as kinesins, MAP65 isoforms and MOR1, we detected 'unknown' 70 kDa proteins that belong to a family of five closely related Arabidopsis proteins having no known homologues amongst non-plant organisms. To verify that AtMAP70-1 associates with microtubules in vivo, it was expressed as a GFP fusion. This confirmed that the protein decorates all four microtubule arrays in both transiently infected Arabidopsis and stably transformed tobacco BY-2 suspension cells. Microtubule-directed drugs perturbed the localization of AtMAP70-1 but cytochalasin D did not. AtMAP70-1 contains four predicted coiled-coil domains and truncation studies identified a central domain that targets the fusion protein to microtubules in vivo. This study therefore introduces a novel family of plant-specific proteins that interact with microtubules.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |