例如:"lncRNA", "apoptosis", "WRKY"

Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts.

Biol. Chem.2005 Jan;386(1):41-52. doi:10.1515/BC.2005.006
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The glyoxalase system consisting of glyoxalase I (GloI) and glyoxalase II (GloII) constitutes a glutathione-dependent intracellular pathway converting toxic 2-oxoaldehydes, such as methylglyoxal, to the corresponding 2-hydroxyacids. Here we describe a complete glyoxalase system in the malarial parasite Plasmodium falciparum. The biochemical, kinetic and structural properties of cytosolic GloI (cGloI) and two GloIIs (cytosolic GloII named cGloII, and tGloII preceded by a targeting sequence) were directly compared with the respective isofunctional host enzymes. cGloI and cGloII exhibit lower K(m) values and higher catalytic efficiencies (k(cat)/K(m) ) than the human counterparts, pointing to the importance of the system in malarial parasites. A Tyr185Phe mutant of cGloII shows a 2.5-fold increase in K(m) , proving the contribution of Tyr185 to substrate binding. Molecular models suggest very similar active sites/metal binding sites of parasite and host cell enzymes. However, a fourth protein, which has highest similarities to GloI, was found to be unique for malarial parasites; it is likely to act in the apicoplast, and has as yet undefined substrate specificity. Various S-(N-hydroxy-N-arylcarbamoyl)glutathiones tested as P. falciparum Glo inhibitors were active in the lower nanomolar range. The Glo system of Plasmodium will be further evaluated as a target for the development of antimalarial drugs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读