例如:"lncRNA", "apoptosis", "WRKY"

Evidence for the association of synaptotagmin with glutathione S-transferases: implications for a novel function in human breast cancer.

Clin. Biochem.2005 May;38(5):436-43
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:To analyze the pattern of changes in GSTs in cancerous and adjacent non-cancerous tissues obtained from breast cancer patients undergoing surgery. DESIGN AND METHODS:Cytosolic GST purification, assay of GST, protein expression levels, and GST-synaptotagmin association were analyzed using standard biochemical techniques like GSH-affinity purification, spectrophotometry, SDS-PAGE, Western blots, and matrix-assisted laser desorption and ionization-time of flight (MALDI-TOF). RESULTS:GST activity in cancerous tissues (0.26 U/mg protein) was significantly higher (P < 0.05) as compared to those from adjacent non-cancerous tissues (0.14 U/mg protein) of breast cancer patients. Further analysis of GST subunits on SDS-PAGE and Western blots using class-specific GST antibodies revealed significant elevation in GST-pi levels in cancer tissues with no appreciable changes in GST-alpha and GST-mu. Along with the elevation of GST-pi levels, high molecular weight proteins (approximately 70 kDa) cross reacting with GST antibodies were detected only in surgically resected tumor biopsies but not in the non-cancerous tissues adjacent to the tumor. Based on MALDI-TOF analysis, the high molecular weight band was identified as synaptotagmin V bound to GST-M1 with 47% sequence coverage after processing on an MS-FIT search engine. CONCLUSIONS:Our results suggest a novel putative functional role for the GST-synaptotagmin complex in human breast cancers. As this association of GST M1-synaptotagmin was not seen in adjacent non-cancerous tissues, this can be used as a marker for breast cancers.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读