例如:"lncRNA", "apoptosis", "WRKY"

Abnormalities in uridine homeostatic regulation and pyrimidine nucleotide metabolism as a consequence of the deletion of the uridine phosphorylase gene.

J Biol Chem. 2005 Jun 03;280(22):21169-75. Epub 2005 Mar 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We report in the present study the critical role of uridine phosphorylase (UPase) in uridine homeostatic regulation and pyrimidine nucleotide metabolism, employing newly developed UPase-/- mice. Our data demonstrate that the abrogation of UPase activity led to greater than a 6-fold increase in uridine concentrations in plasma, a 5-6-fold increase in lung and gut, and a 2-3-fold increase in liver and kidney, as compared with wild type mice. Urine uridine levels increased 24-fold normal in UPase-/- mice. Uridine half-life and the plasma retention of pharmacological doses of uridine were significantly prolonged. Further, in these UPase-/- mice, abnormal uridine metabolism led to disorders of various nucleotide metabolisms. In the liver, gut, kidney, and lung of UPase-/- mice, total uridine ribonucleotide concentrations increased 2-3 times as compared with control mice. Cytidine ribonucleotides and adenosine and guanosine ribonucleotides also increased, although to a lesser extent, in these organs. Most significant deoxyribonucleotide changes were present in the gut and lung of UPase-/- mice. In these tissues, dTTP concentration increased more than 4-fold normal, and dCTP, dGTP, and dATP concentrations rose 1-2 times normal. In kidney, dTTP concentration increased 2-fold normal, and dCTP and dGTP concentrations rose less than 1-fold normal. In addition, the accumulated uridine in plasma and tissues efficiently reduced 5-fluorouracil host toxicity and altered the anesthetic effect of pentobarbital. These data indicate that UPase is a critical enzyme in the regulation of uridine homeostasis and pyrimidine nucleotide metabolism, and 5-fluorouracil activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读