例如:"lncRNA", "apoptosis", "WRKY"

Experimental and computational characterization of the dimerization of the PTS-regulation domains of BglG from Escherichia coli.

J. Mol. Biol.2005 Apr 8;347(4):693-706
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BglG and LicT are transcriptional antiterminators from Escherichia coli and Bacillus subtilis, respectively, that control the expression of genes and operons involved in transport and catabolism of carbohydrates. Both proteins contain a duplicate conserved domain, the PTS-regulation domain (PRD), and they are regulated by phosphorylation on specific, highly conserved histidine residues located in the PRDs. However, despite their similar function and the high sequence identity, experimental evidence implies different modes of regulation. Thus, BglG must be de-phosphorylated on PRD2 in order to form active dimers, whereas activation of LicT requires de-phosphorylation on PRD1 and phosphorylation on PRD2. Here we address two goals. First, we test in vivo and in silico the effect of point mutations in the PRDs of BglG on the PRD-PRD dimerization. Second, we explore computationally the effect of histidine phosphorylation on PRD dimerization in BglG and LicT. We find excellent correspondence between the experimental and computational measures of the influence of mutations on PRD dimerization in BglG. This establishes that the geometric-electrostatic complementarity scores computed with the program MolFit provide a good measure of the effects of mutations in this system. In addition, it indicates that the dimerization mode of the separately expressed PRDs of BglG is similar to the dimers formed by activated LicT. The computations also show that phosphorylation of the histidine residues in PRD1 of either BglG or LicT leads to a strong electrostatic repulsion. Conversely, the phosphorylation of one histidine residue in PRD2 of LicT leads to improved electrostatic complementarity at the PRD2-PRD2 interface, whereas the corresponding phosphorylation in BglG has negligible contribution. This different conduct may be attributed to a single replacement in the sequence of PRD2 in BglG compared to LicT, Ala262 versus Asp261, respectively.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读