[No authors listed]
Interfering RNA was used to suppress the expression of two genes that encode the manganese-stabilizing protein of photosystem II in Arabidopsis thaliana, MSP-1 (encoded by psbO-1, At5g66570), and MSP-2 (encoded by psbO-2, At3g50820). A phenotypic series of transgenic plants was recovered that expressed high, intermediate, and low amounts of these two manganese-stabilizing proteins. Chlorophyll fluorescence induction and decay analyses were performed. Decreasing amounts of expressed protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(v)/F(m)) in both the absence and the presence of dichloromethylurea. This result indicated that the amount of functional photosystem II reaction centers was compromised in the plants that exhibited intermediate and low amounts of the manganese-stabilizing proteins. An analysis of the decay of the variable fluorescence in the presence of dichlorophenyldimethylurea indicated that charge recombination between Q ((A-)) and the S(2) state of the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the manganese stabilizing proteins. This may have indicated a stabilization of the S(2) state in the absence of the extrinsic component. Immunological analysis of the photosystem II protein complement indicated that significant losses of the CP47, CP43, and D1 proteins occurred upon the loss of the manganese-stabilizing proteins. This indicated that these extrinsic proteins were required for photosystem II core assembly/stability. Additionally, although the quantity of the 24-kDa extrinsic protein was only modestly affected by the loss of the manganese-stabilizing proteins, the 17-kDa extrinsic protein dramatically decreased. The control proteins ribulose bisphosphate carboxylase and cytochrome f were not affected by the loss of the manganese-stabilizing proteins; the photosystem I PsaB protein, however, was significantly reduced in the low expressing transgenic plants. Finally, it was determined that the transgenic plants that expressed low amounts of the manganese-stabilizing proteins could not grow photoautotrophically.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |