例如:"lncRNA", "apoptosis", "WRKY"

The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-alpha class of animal prolyl 4-hydroxylases.

J Biol Chem. 2005 Apr 15;280(15):14645-55. Epub 2005 Feb 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Skp1 is a cytoplasmic and nuclear protein of eukaryotes best known as an adaptor in SCF ubiquitin-protein isopeptide ligases. In Dictyostelium, Skp1 is subject to 4-hydroxylation at Pro(143) and subsequent O-glycosylation by alpha-linked GlcNAc and other sugars. Soluble cytosolic extracts have Skp1 prolyl 4-hydroxylase (P4H) activity, which can be measured based on hydroxylation-dependent transfer of [(3)H]GlcNAc to recombinant Skp1 by recombinant (Skp1-protein)-hydroxyproline alpha-N-acetyl-d-glucosaminyltransferase. The Dictyostelium Skp1 P4H gene (phyA) was predicted using a bioinformatics approach, and the expected enzyme activity was confirmed by expression of phyA cDNA in Escherichia coli. The purified recombinant enzyme (P4H1) was dependent on physiological concentrations of O(2), alpha-ketoglutarate, and ascorbate and was inhibited by CoCl(2), 3,4-dihydroxybenzoate, and 3,4-dihydroxyphenyl acetate, as observed for known animal cytoplasmic P4Hs of the hypoxia-inducible factor-alpha (HIFalpha) class. Overexpression of phyA cDNA in Dictyostelium yielded increased enzyme activity in a soluble cytosolic extract. Disruption of the phyA locus by homologous recombination resulted in loss of detectable activity in extracts and blocked hydroxylation-dependent glycosylation of Skp1 based on molecular weight analysis by SDS-PAGE, demonstrating a requirement for P4H1 in vivo. The sequence and functional similarities of P4H1 to animal HIFalpha-type P4Hs suggest that hydroxylation of Skp1 may, like that of animal HIFalpha, be regulated by availability of O(2), alpha-ketoglutarate, and ascorbate, which might exert novel control over Skp1 glycosylation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读