[No authors listed]
This study investigated the role of alpha-internexin in the neuronal alterations associated with beta-amyloid plaque formation in Alzheimer's disease (AD). Cortical neurons could be defined by their variable content of neurofilament (NF) triplet and alpha-internexin proteins, with a distinct population of supragranular pyramidal cells containing alpha-internexin alone. Both NF triplet and alpha-internexin were localized to reactive axonal structures in physically damaged neurons in experimental trauma models. Similarly, NF triplet and alpha-internexin immunoreactive neurites were localized to plaques densely packed with beta-amyloid fibrils in preclinical AD cases, indicating that certain plaques may cause structural injury or impediment of local axonal transport. However, alpha-internexin, and not NF triplet, ring-like reactive neurites were present in end-stage AD cases, indicating the relatively late involvement of neurons that selectively contain alpha-internexin. These results implicate the expression of specific intermediate filament proteins in a distinct hierarchy of differential neuronal vulnerability to AD.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |