例如:"lncRNA", "apoptosis", "WRKY"

Evolution of new hormone function: loss and gain of a receptor.

J. Hered.2005 May-Jun ;96(3):205-11. Epub 2005 Jan 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The vertebrate proglucagon gene encodes three glucagon-like sequences (glucagon, glucagon-like peptide-1 [GLP-1], and glucagon-like peptide 2 [GLP-2]) that have distinct functions in regulating metabolism in mammals. In contrast, glucagon and GLP-1 have similar physiological actions in fish, that of mammalian glucagon. We have identified sequences similar to receptors for proglucagon-derived peptides from the genomes of two fish (pufferfish and zebrafish), a frog (Xenopus tropicalis), and a bird (chicken). Phylogenetic analysis of the receptor sequences suggested an explanation for the divergent function of GLP-1 in fish and mammals. The phylogeny of our predicted and characterized receptors for proglucagon-derived peptides demonstrate that receptors for glucagon, GLP-1, and GLP-2 have an origin before the divergence of fish and mammals; however, fish have lost the gene encoding the GLP-1 class of receptors, and likely the incretin action of GLP-1. Receptors that bind GLP-1, but yield glucagon-like action, have been characterized in goldfish and zebrafish, and these sequences are most closely related to glucagon receptors. Both pufferfish and zebrafish have a second glucagon receptor-like gene that is most closely related to the characterized goldfish glucagon receptor. The phylogeny of glucagon receptor-like genes in fish indicates that a duplication of the glucagon receptor gene occurred on the ancestral fish lineage, and could explain the shared action of glucagon and GLP-1. We suggest that the binding specificity of one of the duplicated glucagon receptors has diverged, yielding receptors for GLP-1 and glucagon, but that ancestral downstream signaling has been maintained, resulting in both receptors retaining glucagon-stimulated downstream effects.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读