[No authors listed]
Summary The purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) are critical for energy metabolism, cell signalling and cell reproduction. Despite their essential function, little is known about the regulation and in vivo expression pattern of the genes involved in the de novo purine synthesis pathway. The complete coding region of the bovine phosphoribosylaminoimidazole carboxylase gene (PAICS), which catalyses steps 6 and 7 of the de novo purine biosynthesis pathway, as well as bovine genomic sequences of the six other genes in the pathway producing inosine monophosphate (IMP) and AMP [phosphoribosyl pyrophosphate amidotransferase (PPAT), phosphoribosylglycinamide formyltransferase (GART), phosphoribosylformylglycinamidine synthase (PFAS), adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) and adenylosuccinate synthase (ADSS)], were identified. The genes were mapped to segments of six different bovine chromosomes using a radiation hybrid (RH) cell panel. The gene PPAT, coding for the presumed rate-limiting enzyme of the purine de novo pathway was closely linked to PAICS on BTA6. These, and the other bovine locations i.e. GART at BTA1, PFAS at BTA19, ADSL at BTA5, ATIC at BTA2 and ADSS at BTA16, are in agreement with published comparative maps of cattle and man. PAICS and PPAT genes are known to be closely linked in human, rat and chicken. Previously, an expressed sequence fragment of PAICS (Bos taurus corpus luteum, BTCL9) was mapped to BTA13. By isolation and characterization of a BAC clone, we have now identified a PAICS processed pseudogene sequence (psiPAICS) on BTA13. Processed pseudogene sequences of PAICS and other genes of the purine biosynthesis pathway were identified in several mammalian species, indicating that the genes of this pathway have been susceptible to retrotransposition. The seven bovine genes are expressed at a higher level in testicular and ovary tissues compared with skeletal muscle.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |