例如:"lncRNA", "apoptosis", "WRKY"

Substitutions in region 2.4 of sigma70 allow recognition of the sigmaS-dependent aidB promoter.

J Biol Chem. 2004 Dec 31;279(53):55255-61. Epub 2004 Oct 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The strict dependence of transcription from the aidB promoter (PaidB) on the Esigma(S) form of RNA polymerase is because of the presence of a C nucleotide as the first residue of the -10 promoter sequence (-12C), which does not allow an open complex formation by Esigma(70). In this report, sigma(70) mutants carrying either the Q437H or the T440I single amino acid substitutions, which allow -12C recognition by sigma(70), were tested for their ability to carry out transcription from PaidB. The Gln-437 and Thr-440 residues are located in region 2.4 of sigma(70) and correspond to Gln-152 and Glu-155 in sigma(S). Interestingly, the Q437H mutant of sigma(70), but not T440I, was able to promote an open complex formation and to initiate transcription at PaidB. In contrast to T440I, a T440E mutant was proficient in carrying out transcription from PaidB. No sigma(70) mutant displayed significantly increased interaction with a PaidB mutant in which the -12C was substituted by a T (PaidB((C12T))), which is also efficiently recognized by wild type sigma(70). The effect of the T440E mutation suggests that the corresponding Glu-155 residue in sigma(S) might be involved in -12C recognition. However, substitution to alanine of the Glu-155 residue, as well as of Gln-152, in the sigma(S) protein did not significantly affect Esigma(S) interaction with PaidB. Our results reiterate the importance of the -12C residue for sigma(S)-specific promoter recognition and strongly suggest that interaction with the -10 sequence and open complex formation are carried out by different determinants in the two sigma factors.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读