例如:"lncRNA", "apoptosis", "WRKY"

RhoA GTPase regulates L-type Ca2+ currents in cardiac myocytes.

Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H650-9. Epub 2004 Oct 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Regulation of ionic channels plays a pivotal role in controlling cardiac function. Here we show that the Rho family of small G proteins regulates L-type Ca2+ currents in ventricular cardiomyocytes. Ventricular myocytes isolated from transgenic (TG) mice that overexpress the specific GDP dissociation inhibitor Rho GDI-alpha exhibited significantly decreased basal L-type Ca2+ current density (approximately 40%) compared with myocytes from nontransgenic (NTG) mice. The Ca2+ channel agonist BAY K 8644 and the beta-adrenergic agonist isoproterenol increased Ca2+ currents in both NTG and TG myocytes to a similar maximal level, and no changes in mRNA or protein levels were observed in the Ca2+ channel alpha1-subunits. These results suggest that the channel activity but not the expression level was altered in TG myocytes. In addition, the densities of inward rectifier and transient outward K+ currents were unchanged in TG myocytes. The amplitudes and rates of basal twitches and Ca2+ transients were also similar between the two groups. When the protein was delivered directly into adult ventricular myocytes via TAT-mediated protein transduction, Rho GDI-alpha significantly decreased Ca2+ current density, which supports the idea that the defective Ca2+ channel activity in TG myocytes was a primary effect of the transgene. In addition, expression of a dominant-negative RhoA but not a dominant-negative Rac-1 or Cdc42 also significantly decreased Ca2+ current density, which indicates that inhibition of Ca2+ channel activity by overexpression of Rho GDI-alpha is mediated by inhibition of RhoA. This study points to the L-type Ca2+ channel activity as a novel downstream target of the RhoA signaling pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读