例如:"lncRNA", "apoptosis", "WRKY"

Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans.

J. Cell. Sci.2004 Oct 1;117(Pt 21):5133-43
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cysteine proteases are involved in the degradation of intracellular and extracellular proteins, although their precise roles in vivo are not well understood. Here we characterise a genetic mutant of the Caenorhabditis elegans cathepsin L protease gene cpl-1. CPL-1 is provided maternally and is essential for C. elegans embryogenesis. Immunofluorescence and electron microscopy data show that yolk endocytosis and initial yolk platelet formation occur normally in cpl-1 mutant oocytes and embryos. However, at around the 8-12 cell stage of embryogenesis, yolk platelets begin to aggregate and these enlarged yolk platelets fill the cytoplasm of cpl-1 mutant embryos. Coincident with this aggregation is loss of fluorescence from a yolk green fluorescent protein (YP170::GFP). This suggests that loss of CPL-1 activity leads to aberrant processing and/or conformational changes in yolk proteins, resulting in abnormal platelet fusion. This study has relevance to the abnormal fusion and aggregation of lysosomes in cathepsin L-deficient mice and to other lysosomal disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读