[No authors listed]
Eukaryotic DNA replication requires an ordered and regulated machinery to control G1/S transition. The formation of the pre-replicative complex (pre-RC) is a key step involved in licensing DNA for replication. Here, we identify all putative components of the full pre-RC in the genome of the model plant Arabidopsis thaliana. Different from the other eukaryotes, Arabidopsis houses in its genome two putative homologs of ORC1, CDC6 and CDT1. Two mRNA variants of AtORC4 subunit, with different temporal expression patterns, were also identified. Two-hybrid binary interaction assays suggest a primary architectural organization of the Arabidopsis ORC, in which AtORC3 plays a central role in maintaining the complex associations. Expression profiles differ among pre-RC components suggesting the existence of various forms of the complex, possibly playing different roles during development. In addition, the expression of the putative pre-RC genes in non-proliferating plant tissues suggests that they might have roles in processes other than DNA replication licensing.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |