[No authors listed]
The small GTPase superfamily, which includes the Ras, Rho/Rac, Rab, Arf and Ran subfamilies, serves as a signal transducer to regulate cell proliferation and differentiation, actin cytoskeleton, membrane trafficking, and nuclear transport. Here, we identify novel GTPases (human Gie1 and Gie2) that form a distinct subfamily of the small GTPases in terms of their sequences and intracellular function. Gie stands for 'novel GTPase indispensable for equal segregation of chromosomes', and this subfamily is conserved in multicellular organisms. Expression of dominant-negative Gie mutants in mammalian cells or knockdown of Gie transcripts using RNA interference in Drosophila S2 cells induced abnormal morphology in the chromosome segregation. Gie protein has ability to bind to tubulin and localizes with microtubules on the spindle mid-zone in late mitosis. Furthermore, overexpression of Gie mutants that lack putative effector domains but have tubulin-binding ability induced micronucleus formation. Thus, this is the first report showing that a small GTPase subfamily capable of associating with microtubules might be involved in chromosome segregation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |