[No authors listed]
The lung endothelium layer is exposed to continuous CO(2) transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na(+)/H(+) exchanger and HCO(3)(-)-dependent H(+)-transporting mechanisms regulate intracellular pH (pH(cyt)) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H(+)-ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, to maintain pH(cyt) homeostasis. Immunocytochemical studies revealed V-H(+)-ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na(+) and HCO(3)(-) that were similar to those observed in the presence of either Na(+), or Na(+) and HCO(3)(-). The Na(+)- and HCO(3)(-)-independent pH(cyt) recovery was inhibited by bafilomycin A(1), a V-H(+)-ATPase inhibitor. These studies show a Na(+)- and HCO(3)(-)-independent pH(cyt) regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |