例如:"lncRNA", "apoptosis", "WRKY"

PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth.

FEBS Lett.2004 Jul 2;569(1-3):267-71
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Previously, it was shown that the recruitment of RET into lipid rafts by glial cell line-derived neurotrophic factor (GDNF)/GFRalpha1 is crucial for efficient signal transduction. Here, we show that the mouse GFRalpha4 is a functional, N-glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein, which mediates persephin (PSPN)-induced phosphorylation of RET, but has an almost undetectable capacity to recruit RET into the 0.1% Triton X-100 insoluble membrane fraction. In spite of this, PSPN/mGFRalpha4 promotes neurite outgrowth in PC6-3 cells and survival of cerebellar granule neurons. As we show that also human PSPN/GFRalpha4 is unable to recruit RET into lipid rafts, we propose that the mammalian GFRalpha4 in this respect differs from GFRalpha1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读