例如:"lncRNA", "apoptosis", "WRKY"

UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro.

J Biol Chem. 2004 Aug 20;279(34):35735-40. Epub 2004 Jun 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The rescue of stalled replication forks via a series of steps that include fork regression, template switching, and fork restoration often has been proposed as a major mechanism for accurately bypassing non-coding DNA lesions. Bacteriophage T4 encodes almost all of the proteins required for its own DNA replication, recombination, and repair. Both recombination and recombination repair in T4 rely on UvsX, a RecA-like recombinase. We show here that UvsX plus the T4-encoded helicase Dda suffice to rescue stalled T4 replication forks in vitro. This rescue is based on two sequential template-switching reactions that allow DNA replication to bypass a non-coding DNA lesion in a non-mutagenic manner.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读