例如:"lncRNA", "apoptosis", "WRKY"

Creation of a shikimate pathway variant.

J. Am. Chem. Soc.2004 Jun 9;126(22):6856-7. doi:10.1021/ja049730n
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The competition between the Escherichia coli carbohydrate phosphotransferase system and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase for phosphoenolpyruvate limits the concentration and yield of natural products microbially synthesized via the shikimate pathway. To circumvent this competition for phosphoenolpyruvate, a shikimate pathway variant has been created. 2-Keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases encoded by Escherichia coli dgoA and Klebsiella pneumoniae dgoA are subjected to directed evolution. The evolved KDPGal aldolase isozymes exhibit 4-8-fold higher specific activities relative to that for native KDPGal aldolase with respect to catalyzing the condensation of pyruvate and d-erythrose 4-phosphate to produce DAHP. To probe the ability of the created shikimate pathway variant to support microbial growth and metabolism, growth rates and synthesis of 3-dehydroshikimate are examined for E. coli constructs that lack phosphoenolpruvate-based DAHP synthase activity and rely on evolved KDPGal aldolase for biosynthesis of shikimate pathway intermediates and products.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读