[No authors listed]
To identify proteins potentially involved in osteoclast differentiation, we conducted a proteomics-based analysis using the osteoclastogenesis model cell line RAW264.7. Total proteins from undifferentiated cells, committed pre-osteoclasts, and differentiated osteoclasts were resolved by two-dimensional gel electrophoresis. Protein spots showing differential expression levels were processed for peptide mass fingerprinting. Among them, we identified the metallocarboxypeptidase CPX-1, which was prominently increased in pre-osteoclasts and then decreased in mature osteoclasts. Results of reverse transcription polymerase chain reaction, Western blot, and confocal microscopy were in agreement with the proteomics data. Notably, the forced overexpression of CPX-1 led to the inhibition of osteoclast formation, but not pre-osteoclast generation. Therefore, the transient up-regulation pattern of CPX-1 expression may be important for the successful progression from pre-osteoclasts to mature osteoclasts.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |