[No authors listed]
Commissural axons in vertebrates and insects are initially attracted to the nervous system midline, but once they reach this intermediate target they undergo a dramatic switch, becoming responsive to repellent Slit proteins at the midline, which expel them onto the next leg of their trajectory. We have unexpectedly implicated a divergent member of the Robo family, Rig-1 (or Robo3), in preventing premature Slit sensitivity in mammals. Expression of Rig-1 protein by commissural axons is inversely correlated with Slit sensitivity. Removal of Rig-1 results in a total failure of commissural axons to cross. Genetic and in vitro analyses indicate that Rig-1 functions to repress Slit responsiveness similarly to Commissureless (Comm) in Drosophila. Unlike Comm, however, Rig-1 does not produce its effect by downregulating Robo receptors on precrossing commissural axon membranes. These results identify a mechanism for regulating Slit repulsion that helps choreograph the precise switch from attraction to repulsion at a key intermediate axonal target.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |