例如:"lncRNA", "apoptosis", "WRKY"

Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage.

Appl Environ Microbiol. 2004 Mar;70(3):1658-68. doi:10.1128/AEM.70.3.1658-1668.2004
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Members of the Roseobacter lineage, an ecologically important marine clade within the class alpha-Proteobacteria, harbor genes for the protocatechuate branch of the beta-ketoadipate pathway, a major catabolic route for lignin-related aromatic compounds. The genes of this pathway are typically clustered, although gene order varies among organisms. Here we characterize genes linked to pcaH and -G, which encode protocatechuate 3,4-dioxygenase, in eight closely related members of the Roseobacter lineage (pairwise 16S rRNA gene sequence identities, 92 to 99%). Sequence analysis of genomic fragments revealed five unique pca gene arrangements. Identical gene organization was found for isolates demonstrating species-level identity (i.e., >99% 16S rRNA gene similarity). In one isolate, six functionally related genes were clustered: pcaQ, pobA, pcaD, pcaC, pcaH, and pcaG. The remaining seven isolates lacked at least one of these genes in their clusters, although the relative order of the remaining genes was preserved. Three genes (pcaC, -H, and -G) were physically linked in all isolates. A highly conserved open reading frame (ORF) was found immediately downstream of pcaG in all eight isolates. Reverse transcription-PCR analysis of RNA from one isolate, Silicibacter pomeroyi DSS-3, provides evidence that this ORF is coexpressed with upstream pca genes. The absence of this ORF in similar bacterial pca gene clusters from diverse microbes suggests a niche-specific role for its protein product in Roseobacter group members. Collectively, these comparisons of bacterial pca gene organization illuminate a complex evolutionary history and underscore the widespread ecological importance of the encoded beta-ketoadipate pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读