例如:"lncRNA", "apoptosis", "WRKY"

Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli.

Mol. Microbiol.2004 Feb;51(3):799-811
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The csiD-ygaF-gabDTP region in the Escherichia coli genome represents a cluster of sigma S-controlled genes. Here, we investigated promoter structures, sigma factor dependencies, potential co-regulation and environmental regulatory patterns for all of these genes. We find that this region constitutes a complex operon with expression being controlled by three differentially regulated promoters: (i) csiDp, which affects the expression of all five genes, is cAMP-CRP/sigma S-dependent and activated exclusively upon carbon starvation and stationary phase; (ii) gabDp1, which is sigma S-dependent and exhibits multiple stress induction like sigma S itself; and (iii) gabDp2[previously suggested by Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002) J. Bacteriol. 184: 6976-6986], which appears to be Nac/sigma 70-controlled and to respond to poor nitrogen sources. In addition, we identify a novel repressor, CsiR, which modulates csiDp activity in a temporal manner during early stationary phase. Finally, we propose a physiological role for sigma S-controlled GabT/D-mediated gamma-aminobutyrate (GABA) catabolism and glutamate accumulation in general stress adaptation. This physiological role is reflected by the activation of the operon-internal gabDp1 promoter under the different conditions that also induce sigma S, which include shifts to acidic pH or high osmolarity as well as starvation or stationary phase.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读