例如:"lncRNA", "apoptosis", "WRKY"

Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor.

J Biol Chem. 2004 Jan 16;279(3):1703-12. Epub 2003 Oct 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Necdin is a growth suppressor expressed predominantly in postmitotic neurons and implicated in their terminal differentiation. Necdin shows a moderate homology to the MAGE family proteins, the functional roles of which are largely unknown. Human genes encoding necdin, MAGEL2 (necdin-like 1), and MAGE-G1 (necdin-like 2) are located in proximal chromosome 15q, a region associated with neurodevelopmental disorders such as Prader-Willi syndrome, Angelman syndrome, and autistic disorder. The necdin and MAGEL2 genes are subjected to genomic imprinting and suggested to be involved in the etiology of Prader-Willi syndrome. In this study, we compared biochemical and functional characteristics of murine orthologs of these necdin-related MAGE proteins. The colony formation and bromodeoxyuridine incorporation analyses revealed that necdin and MAGE-G1, but not MAGEL2, induced growth arrest. Necdin and MAGE-G1 interacted with the transcription factor E2F1 via its transactivation domain, repressed E2F1-dependent transcription, and antagonized E2F1-induced apoptosis of N1E-115 neuroblastoma cells. In addition, necdin and MAGE-G1 interacted with the p75 neurotrophin receptor via its distinct intracellular domains. In contrast, MAGEL2 failed to bind to these necdin interactors, suggesting that MAGEL2 has no necdin-like function in developing brain. Overexpression of p75 translocated necdin and MAGE-G1 in the proximity of the plasma membrane and reduced their association with E2F1 to facilitate E2F1-induced death of neuroblastoma cells. These results suggest that necdin and MAGE-G1 target both E2F1 and p75 to regulate cell viability during brain development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读