例如:"lncRNA", "apoptosis", "WRKY"

Chemistry. The motions of an enzyme soloist.

Science. 2003 Oct 10;302(5643):239-40
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Dynamics of proteins are crucial to their function. In his Perspective, Orrit stresses the advantages of studying these dynamics with single-molecule methods--which require no synchronization--rather than with conventional ensemble measurements. He highlights the report by Yang et al., who follow the fluorescence of a single enzyme molecule. Electron transfer from the fluorophore to a quencher induces fluctuations of the fluorescence lifetime along with the fluorophore-quencher distance. The wide range of characteristic times of those fluctuations reveals the complexity of the protein's potential energy landscape. As a new molecular ruler, electron transfer complements other single-molecule methods such as energy transfer (FRET) for distances shorter than a few nanometers.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读